Introduction to Waste Water Pump Station Design

Knowing the Fundamentals Before You Begin

Mike Zappone, P.E.
Carollo Engineers
mzappone@carollo.com

Introduction to Waste Water Pump Station Design

Knowing the Fundamentals Before You Begin

Agenda

- General Overview
- Pump Station Types
- Wet Well Configurations
- Pump Curves
- Pump Station Hydraulics
- Design Criteria

General Overview

Typical Pump Station Facility

Pump Station Features

- Odor Control
- 2 Electrical and Control Facilities
- 3 Standby Generator
- 4 Loading Bay
- 5 Equipment Handling Room
- 6 Force Main Valve Vault

Typical Pump Station Facility

Pump Station Features

- Odor Control
- 2 Electrical and Control Facilities
- Standby Generator
- 4 Loading Bay
- 5 Equipment Handling Room
- 6 Force Main Valve Vault
- Wet Well

Typical Pump Station Facility

Pump Station Features

- Odor Control
- 2 Electrical and Control Facilities
- Standby Generator
- 4 Loading Bay
- 5 Equipment Handling Room
- 6 Force Main Valve Vault
- Wet Well
- 8 Pump Room
- Valves & Flow Meters
- 10 Pump/Equipment Removal

Pump Station Types

Common Pump Station Types

- Dry Pit / Wet Pit (Dry Well/Wet Well)
- Wet Pit Submersible
- Dry Pit Submersible

Dry Pit/Wet Pit

Dry Pit/Wet Pit

Hrizontal Dry Pit

Dry Pit / Wet Pit

Benefits

- Visible inspection during operation
- Valves and appurtenances are accessible
- High efficiency pumps
- Multiple manufacturers

Limitations

- Large footprint
- Ventilation required
- Equipment handling can be extensive.
- High capital cost

Wet Pit Submersible

Wet Pit Submersible

Screw Centrifugal Submersible

Non-Clog Submersible

Wet Pit Submersible

Benefits

- Small footprint
- Reduced capital cost
- Limited ventilation requirements

Limitations

- Cannot visually inspect pumps without removal
- Pumps must be removed from wet well for maintenance
- Pumps are expensive to replace

Dry Pit Submersible

Dry Pit Submersible – Stockholm, Sweden

Horizontal

Dry Pit Submersible

Benefits

- Easy to maintain pumps
- Valves and appurtenances are accessible
- Visible inspection during operation
- Most suitable solution for dry pit retrofit.

Limitations

- Large footprint
- Ventilation Required
- High capital cost (new)
- Pumps are more expensive to replace
- Large pumps can require external cooling system

Wet Well Configurations

Common Wet Well Configurations

- Hydraulic Institute (HI)
 - Circular Intake (HI 9.8.3.3)
 - Rectangular Intake (HI 9.8.3.4)
 - Trench-Type Wet Well (HI 9.8.3.2)

Circular Wet Well

Rectangular Wet Well

Trench Type (Self-Cleaning) Wet Well

Pump Curves

How A Pump Works

- Liquid forced into impeller
- Vanes passes kinetic energy to liquid
- Liquid rotates and leaves impeller
- Volute casing converts kinetic energy into pressure energy

Manufacturer's Pump Performance Curves

Best Efficiency Point and Operating Range

- BEP The flow at which pump is operating at its highest efficiency
- POR 70% 120% of BEP flow
- AOR Region set by the manufacturer

Pump Preferred Operating Range

ANSI Pump Curve Sensitivity For Pump Reliability

% Flow

.....Where you operate on the curve matters!

Pump Station Hydraulics

Pump Station Hydraulics

- Pump Total Dynamic Head (TDH)
- System-Head Curves
- Pump Selection
- Pump Efficiency
- Variable Speed Pumping

Pump Total Dynamic Head (TDH)

System Head Curves

Pump Selection

Multiple Pump Operation

Pump Efficiency

Variable Speed Pumping

Design Criteria

Topics of Discussion

- Determine Operating Flows
- Available Design Standards

Frequency Curves – Know Your Flows

- Use of frequency curves to:
 - Identify "typical" operating flow
 - Optimize pump selection - efficiency
 - Minimize infrastructure
 - Save \$\$\$

Available Design Standards

- ANSI/HI Pump Standards
- Pumping Station Design
- Hydraulic Handbook
- Flygt Design
 Recommendations
- Many Others....

Intake Design – Critical to Station Performance

Intake Structure Geometry

Intake Design - Critical to Station Performance

- Intake Structure Geometry
- Inlet Bell Design
- Required Submergence
- Hydraulic Model Studies
 - Methods
 - Acceptance Criteria
- Much, much, more......

Questions?

Mike Zappone, P.E.
Carollo Engineers
mzappone@carollo.com

